DNA e matematica: un nuovo studio fa luce sulle “strane simmetrie” del nostro genoma

15 Novembre 2018
DNA

Un gruppo di ricerca italo-australiano ha messo a punto per la prima volta un modello matematico capace di spiegare le diverse simmetrie presenti nella distribuzione delle basi azotate che compongono il genoma

Nonostante la sua scoperta risalga a ormai 65 anni fa e da allora sia stata costantemente studiata dagli scienziati di tutto il mondo, la celebre doppia elica del DNA custodisce ancora molti misteri. Uno di questi riguarda la distribuzione delle quattro tipologie di nucleotidi che ne compongono la struttura (adenina, timina, guanina e citosina): sappiamo che ci sono particolari simmetrie all’interno dei singoli filamenti di DNA, ma molto resta da scoprire sulla loro origine.

 

Un passo avanti in questa direzione arriva ora dal lavoro di un gruppo di ricerca italo-australiano che coinvolge l’Università di Milano-Bicocca, l’Università di Sydney e l’Università di Bologna. Pubblicato su Nature Scientific Reports, lo studio presenta per la prima volta un modello matematico in grado di spiegare la particolare ripartizione delle basi all’interno del DNA. Un risultato che potrebbe aiutarci a far luce sui processi evolutivi della doppia elica e a spiegare le funzioni ad oggi ancora ignote di molte sue parti.

Simmetrie del DNA

Il genoma umano è formato da più di tre miliardi di coppie di basi azotate, i cosiddetti nucleotidi: adenina (A), timina (T), guanina (G) e citosina (C). Pronunciando un carattere al secondo senza mai fermarsi si impiegherebbero circa cento anni per elencare l’intera sequenza dei nucleotidi presenti al suo interno

Tra gli anni ’40 e ’50 del secolo scorso, il biochimico austriaco Erwin Chargaff, ricorrendo alla cosiddetta tecnica di cromatografia su carta, riuscì a separare la molecola del DNA nelle sue basi costituenti (appunto le quattro basi azotate A, C, G, T) e a determinare la loro percentuale di abbondanza relativa. Grazie a questa tecnica notò che mentre la composizione in basi del DNA varia da una specie all’altra, in ciascun organismo c’è sempre una precisa simmetria: la quantità di adenina è uguale a quella di timina e la quantità di guanina è uguale a quella di citosina.

Fu proprio questa osservazione sperimentale – oggi nota come “Prima regola di Chargaff” – a suggerire ai due biologi Francis Crick e James Watson la struttura a doppia elica del DNA (basata sull’accoppiamento A-T e C-G tra due filamenti) che li portò a ricevere nel 1962 il premio Nobel per la medicina insieme a Maurice Wilkins.

Ma il genoma custodisce anche una seconda, sorprendente simmetria. Le stesse relazioni, infatti, restano valide anche analizzando un singolo filamento di DNA: un parallelismo, questo, – noto come “Seconda regola di Chargaff” – che non essendo collegato alla struttura a doppia elica del genoma è rimasto a lungo un mistero su cui si sono interrogati molti studiosi.

Matematica e trasposoni

Concentrandosi proprio su questo problema, il gruppo di ricerca italo-australiano è riuscito ad ottenere due importanti risultati. Prima di tutto, analizzando la composizione del DNA ha scoperto che al suo interno esistono anche altre simmetrie, non solo legate al conteggio delle singole basi ma relative a quantità statistiche ben più complesse (per questo si parla di “regola di Chargaff estesa”). Queste nuove simmetrie, inoltre, sarebbero originate da specifiche proprietà strutturali di alcune sequenze geniche note come “trasposoni”: particolari porzioni di DNA in grado di muoversi all’interno del genoma.

Basandosi sul ruolo dei trasposoni all’interno del DNA, i ricercatori sono così stati in grado di mettere a punto un modello matematico capace di spiegare le diverse simmetrie osservate nella distribuzione delle basi azotate che compongono il genoma. La correttezza del modello è stata validata con l’analisi approfondita di tutto il genoma umano. E i ricercatori sono ora al lavoro per estendere lo stesso tipo di analisi anche al DNA di altre specie.

Oggi sappiamo che solo una piccola percentuale del DNA (circa il 2%) ha il compito di costruire le oltre centomila proteine presenti nell’organismo umano. Il ruolo del restante 98% è invece ancora solo parzialmente noto e risulta in parte coinvolto nella regolazione dei processi della parte codificante. L’analisi realizzata dal gruppo di ricerca italo-australiano potrebbe allora rivelarsi utile sia per comprendere meglio i processi evolutivi del genoma che per fare luce sui tanti aspetti ancora oscuri del suo funzionamento.

I protagonisti dello studio

La ricerca è stata pubblicata su Nature Scientific Reports con il titolo “The common origin of symmetry and structure in genetic sequences”. Gli autori sono Giampaolo Cristadoro(Università di Milano-Bicocca), Mirko Degli Esposti (Università di Bologna) e Eduardo G. Altmann (University of Sydney).

 

Fonte: Università di Milano-Bicocca

Scheda azienda

© Riproduzione riservata

ARTICOLI CORRELATI

KEAPness istituto tumori regina elena

Individuata firma molecolare che predice l’efficacia dell’immunoterapia nel tumore al polmone

Clinical Cancer Research pubblica un importante studio dell’IRCCS Istituto Nazionale Tumori Regina Elena svolto con ricercatori di Londra e Boston.

Milano Life Science Forum 2024

Milano Life Science Forum 2024: investire sulla salute, crescere come sistema

Il 26 novembre la settima edizione dell'evento annuale di Assolombarda in partnership con il Cluster lombardo scienze della vita.

DPCfam-UHGP

Nuovo dataset DPCfam-UHGP50: una risorsa preziosa per la ricerca sul proteoma gastrointestinale umano

Il nuovo strumento, sviluppato da Area Science Park, migliora l'annotazione delle sequenze proteiche e promuove scoperte nel campo della metagenomica.

Testata giornalistica registrata presso il Tribunale di Milano in data 07.02.2017 al n. 60 Editrice Industriale è associata a:
Anes
Assolombarda

LabWorld

Testata giornalistica registrata presso il Tribunale di Milano in data 07.02.2017 al n. 59

Se vuoi diventare nostro inserzionista, dai un’occhiata ai nostri servizi.
Scarica il mediakit per maggiori dettagli in merito.

La nostra certificazione CSST WebAuditing

Editrice Industriale è associata a:Anes  Assolombarda